Cirrus correction of Landsat 8 imagery
In this guide I will show you how to perform a cloud correction of your Landasat 8 multispectral imagery using the method proposed by Meng Xu, Xiuping Jia and Mark Pickering published in the 2014 IEEE Geoscience and Remote Sensing Symposium:
M. Xu, X. Jia and M. Pickering, “Automatic cloud removal for Landsat 8 OLI images using cirrus band,” 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, 2014, pp. 2511-2514, doi: 10.1109/IGARSS.2014.6946983.
Formal basis for correction
The effect of cirrus clouds on images can be modeled according to the equation:
where, $y_i(u,v)$ is the digital number (DN) stored by the OLI sensor for the band $i$ con i=1,2 …7, for the pixel located in $(u,v)$. $x_i^0(u,v)$ is the true DN related to land cover, and $x_i^c(u,v)$ is the contribution of the cirrus cloud to the DN based on its density. The correction seeks to recover $x_i^0(u,v)$.
The authors of the article suggest that $x_i^c(u,v)$ has a linear relationship with the ND $c(u,v)$ of the cirrus band.
So the correction of the bands is done with the equation:
In this way, what must be found to know is the correction factor
for each of the bands.
Methods to find 
The authors propose two methods to find the correction factor : manual method and automatic method. The automatic correction method is implemented in this guide.
Automatic correction method
This method consists of 3 stages:
- Window size definition.
- linear regression between each band and the Cirrus band for each window.
- filtering of R ^ 2 greater than the user-defined threshold and determination of
from them.
it is taken as the value of the slope of the regression with greater R^2.
The method does not require the creation of masks since the correction depends on the values of the cirrus band. In the cirrus band, areas without the presence of cirrus clouds correspond to the lowest DN of the band, so , that is to say, that in areas without the presence of cirrus clouds no correction is made.
%matplotlib inline
import os
from matplotlib import pyplot as plt
from IPython.display import Image
import numpy as np
import cv2
import math
import time
from osgeo import gdal
from skimage import img_as_ubyte
import scipy
import pandas as pd
from sklearn.linear_model import LinearRegression
import statistics
The first step is to load image bands:
images_dir =x = [os.path.join(r,file) for r,d,f in os.walk("Bands/") for file in f]
print("Image bands in directory: ", len(images_dir), '\n')
main_path = images_dir[0][:-6]
print(main_path)
band_ids =['B1', 'B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'B9']
band_stack = []
pancr = []
cirrus =[]
band_list = []
for band in band_ids:
if band != 'B8' and band != 'B9':
full_path = main_path + band + '.TIF'
print(full_path)
ds = gdal.Open(full_path)
band_stack.append(ds.GetRasterBand(1).ReadAsArray())
elif band == 'B9':
full_path = main_path + band + '.TIF'
ds = gdal.Open(full_path)
cirrus.append(ds.GetRasterBand(1).ReadAsArray())
srs = ds.GetProjectionRef()
GeoTransform = ds.GetGeoTransform()
x_size = ds.RasterXSize
y_size = ds.RasterYSize
print("Multispectral bands found: ", len(band_stack), '\n')
print("Cirrus found: ", len(cirrus), '\n')
print("Reference system: \n", srs, '\n')
print("Transform: \n", GeoTransform, '\n')
Image bands in directory: 10
Bands/LC08_L1TP_009053_20200430_20200430_01_RT_
Bands/LC08_L1TP_009053_20200430_20200430_01_RT_B1.TIF
Bands/LC08_L1TP_009053_20200430_20200430_01_RT_B2.TIF
Bands/LC08_L1TP_009053_20200430_20200430_01_RT_B3.TIF
Bands/LC08_L1TP_009053_20200430_20200430_01_RT_B4.TIF
Bands/LC08_L1TP_009053_20200430_20200430_01_RT_B5.TIF
Bands/LC08_L1TP_009053_20200430_20200430_01_RT_B6.TIF
Bands/LC08_L1TP_009053_20200430_20200430_01_RT_B7.TIF
Multispectral bands found: 7
Cirrus found: 1
Reference system:
PROJCS["WGS 84 / UTM zone 18N",GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4326"]],PROJECTION["Transverse_Mercator"],PARAMETER["latitude_of_origin",0],PARAMETER["central_meridian",-75],PARAMETER["scale_factor",0.9996],PARAMETER["false_easting",500000],PARAMETER["false_northing",0],UNIT["metre",1,AUTHORITY["EPSG","9001"]],AXIS["Easting",EAST],AXIS["Northing",NORTH],AUTHORITY["EPSG","32618"]]
Transform:
(409185.0, 30.0, 0.0, 1234515.0, 0.0, -30.0)
# Contrast stretch function for enhance the bands
# Only for visualization purposes
def enhance_band(band, min_in= 1000, max_in= 30000):
min_setup = 0.0
max_setup = 1.0
enhanced = (band-min_in)*(((max_setup-min_setup)/(max_in-min_in))+min_setup)
return enhanced
Now we can plot the bands:
plt.figure(1)
plt.subplots_adjust(left=0.0, right=2.0, bottom=0.0, top=3.0)
subp_idx = 421
for band, band_name in zip(band_stack, band_ids[:7]):
plt.subplot(subp_idx) ,plt.imshow(band, cmap='gray'),plt.title(band_name)
subp_idx += 1
plt.show()
The Cirrus band from Landsat 8 is plotted below:
plt.figure(2)
plt.imshow(cirrus[0], cmap='gray'),plt.title('Cirrus')
plt.show()
def get_min_band(array):
min_array = np.ndarray.min(array[np.nonzero(array)])
return min_array
def get_max_band(array):
max_array = np.ndarray.max(array[np.nonzero(array)])
return max_array
red_array = band_stack[3].astype(np.uint16)
print(red_array.min())
print(red_array.max())
print(get_min_band(red_array))
print(get_max_band(red_array))
green_array = band_stack[2].astype(np.uint16)
blue_array = band_stack[1].astype(np.uint16)
RED_CH = enhance_band(red_array, min_in= get_min_band(red_array), max_in= 20000)
GREEN_CH = enhance_band(green_array, min_in= get_min_band(green_array), max_in= 20000)
BLUE_CH = enhance_band(blue_array, min_in= get_min_band(blue_array), max_in= 20000)
rgb = np.stack([RED_CH,GREEN_CH,BLUE_CH], axis=2) #axis =2 so its shape is (M,N,3) otherwise doesn't work with plt. (M, N, 3): an image with RGB values (0-1 float or 0-255 int)
0
65535
6177
65535
plt.figure(1, dpi=300)
plt.subplots_adjust(left=0.0, right=3.0, bottom=0.0, top=3.0)
plt.subplot(111) ,plt.imshow(rgb[900:4900,1200:5200]),plt.title("Original image")
plt.show()
plt.figure(2, dpi=300)
plt.subplots_adjust(left=0.0, right=3.0, bottom=0.0, top=3.0)
plt.subplot(121) ,plt.imshow(rgb[1500:2400,1200:2000]),plt.title("Zoom")
plt.subplot(122) ,plt.imshow(rgb[1500:2400,3200:4000]),plt.title("Zoom")
plt.show()
Now we will define a window:
# Define the window size
windowsize_r = 100
windowsize_c = 100
print(cirrus[0].shape[0] - windowsize_r, cirrus[0].shape[1] - windowsize_c)
print((cirrus[0].shape[0] - windowsize_r)/windowsize_r, (cirrus[0].shape[1] - windowsize_c)/windowsize_c)
7631 7481
76.31 74.81
def dehaze(Band,Cirrus):
R_square =[]
coeffs = []
for r in range(0,Band.shape[0] - windowsize_r, windowsize_r):
for c in range(0,Band.shape[1] - windowsize_c, windowsize_c):
window1 = Band[r:r+windowsize_r,c:c+windowsize_c]
window2 = Cirrus[r:r+windowsize_r,c:c+windowsize_c]
X =window1.ravel()
#print("X: ", X)
Y = window2.ravel()
#print("Y: ", Y)
if min(X) >0 and min(Y) >0:
model = LinearRegression().fit(X.reshape((-1, 1)), Y.reshape((-1, 1)))
r_sq = model.score(X.reshape((-1, 1)), Y.reshape((-1, 1)))
#print('coefficient of determination:', r_sq)
#print('intercept:', model.intercept_)
#print('slope:', model.coef_)
if r_sq > 0.9:
R_square.append(r_sq)
coeffs.append(model.coef_)
out = np.concatenate(coeffs).ravel()
coeff = max(out)
min_cirrus = np.ndarray.min(Cirrus[np.nonzero(Cirrus)])
# 0 to NaN
Band_nan = Band.astype(np.float32)
Cirrus_nan = Cirrus.astype(np.float32)
Band_nan[Band_nan == 0] = np.nan
Cirrus_nan[Cirrus_nan == 0] = np.nan
Cor_Band = Band_nan - coeff * (Cirrus_nan - min_cirrus)
return Cor_Band, coeff
Adj_bands = []
for band, band_name in zip(band_stack,band_ids[:7]):
Cor_Band, coeff = dehaze(band,cirrus[0])
Adj_bands.append(Cor_Band)
print("Correction coefficient for ", band_name, ' is: ', coeff, '\n')
file_output = main_path + 'DH_' +band_name + '.tif'
print('Guardando banda: ' + file_output + '\n')
driver = gdal.GetDriverByName('GTiff')
arch = driver.Create(file_output,x_size,y_size,1,gdal.GDT_UInt16)
#arch = driver.Create(file_output,x_size,y_size,1,gdal.GDT_Float32)
arch.SetGeoTransform(GeoTransform)
arch.SetProjection(srs)
arch.GetRasterBand(1).WriteArray(Cor_Band.astype(np.uint16))
#arch.GetRasterBand(1).WriteArray(self.BANDA_CORR.astype(np.float32))
del(arch)
Correction coefficient for B1 is: 1.1283407180009088
Guardando banda: Bands/LC08_L1TP_009053_20200430_20200430_01_RT_DH_B1.tif
Correction coefficient for B2 is: 1.0367915807207655
Guardando banda: Bands/LC08_L1TP_009053_20200430_20200430_01_RT_DH_B2.tif
Correction coefficient for B3 is: 1.128564641830951
Guardando banda: Bands/LC08_L1TP_009053_20200430_20200430_01_RT_DH_B3.tif
Correction coefficient for B4 is: 1.0718697157548667
Guardando banda: Bands/LC08_L1TP_009053_20200430_20200430_01_RT_DH_B4.tif
Correction coefficient for B5 is: 1.3424342074419604
Guardando banda: Bands/LC08_L1TP_009053_20200430_20200430_01_RT_DH_B5.tif
Correction coefficient for B6 is: 2.618422350018301
Guardando banda: Bands/LC08_L1TP_009053_20200430_20200430_01_RT_DH_B6.tif
Correction coefficient for B7 is: 2.957719319315782
Guardando banda: Bands/LC08_L1TP_009053_20200430_20200430_01_RT_DH_B7.tif
plt.figure(3)
plt.subplots_adjust(left=0.0, right=3.0, bottom=0.0, top=3.0)
subp_idx = 331
for band, band_name in zip(Adj_bands, band_ids[:7]):
plt.subplot(subp_idx) ,plt.imshow(band, cmap='gray'),plt.title(band_name)
subp_idx += 1
plt.show()
red_array_corr = Adj_bands[3].astype(np.uint16)
green_array_corr = Adj_bands[2].astype(np.uint16)
blue_array_corr = Adj_bands[1].astype(np.uint16)
RED_CH_CORR = enhance_band(red_array_corr, min_in= get_min_band(red_array_corr), max_in= 17000)
GREEN_CH_CORR = enhance_band(green_array_corr, min_in= get_min_band(green_array_corr), max_in= 17000)
BLUE_CH_CORR = enhance_band(blue_array_corr, min_in= get_min_band(blue_array_corr), max_in= 17000)
rgb_corr = np.stack([RED_CH_CORR,GREEN_CH_CORR,BLUE_CH_CORR], axis=2) #axis =2 so its shape is (M,N,3) otherwise doesn't work with plt. (M, N, 3): an image with RGB values (0-1 float or 0-255 int)
plt.figure(1, dpi=300)
plt.subplots_adjust(left=0.0, right=3.0, bottom=0.0, top=3.0)
plt.subplot(111) ,plt.imshow(rgb_corr[900:4900,1200:5200]),plt.title("Corrected image")
plt.show()
plt.figure(2, dpi=300)
plt.subplots_adjust(left=0.0, right=3.0, bottom=0.0, top=3.0)
plt.subplot(121) ,plt.imshow(rgb_corr[1500:2400,1200:2000]),plt.title("Zoom")
plt.subplot(122) ,plt.imshow(rgb_corr[1500:2400,3200:4000]),plt.title("Zoom")
plt.show()